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A B S T R A C T

In this paper, we put forward an effective and efficient no reference image blurriness assessment metric on the
basis of local binary pattern (LBP) features. In this proposal, we reveal that part of the LBP histogram bins
present monotonously with the degree of blurriness. The proposed method contains the following steps. Firstly,
the LBP maps of an input image are extracted with multiple radiuses. And then, the frequency of pattern his-
togram is analyzed before part of bins are chosen as the features. In addition, we also take the entropy of these
bins as another feature. Finally, we learn the extracted features to predict the image blurriness score. Validation
of the proposed method is conducted on the blurred images of LIVE-II, CSIQ, TID2008, TID2013, LIVE3D IQA
Phase I and LIVE3D IQA Phase II. Experimental results demonstrate that compared with the state-of-the-art
image quality assessment (IQA) methods, the proposed algorithm has notable advantage in correlation with
subjective perception and computational complexity.

1. Introduction

During the acquisition, transmission and processing, digital images
are inevitably suffered from diverse distortions, such as noise, com-
pression and blur [1]. Image quality assessment (IQA) metrics aim to
build mathematic models to evaluate the degree of image quality de-
gradation [2]. In the past few years, IQA problem has been widely
concerned. Generally speaking, IQA methods can be divided into two
categories: subjective evaluation and objective evaluation. Subjective
evaluation, which requires human observers, is effective, reliable and
accurate to estimate perceptual quality. However, it is inconvenient,
cost and time-consuming, and cannot be applied to online applications
[1]. Compared with subjective evaluation, objective evaluation obtains
more advantages, such as easy realization and low cost. So far, full
reference IQA (FR-IQA) metrics are the most mature technology of
objective evaluation with full access to reference image. In most cases,
we cannot obtain the reference image. Thus, it is not practical to be
widely applied in any occasions. As a result, the reduced reference IQA
(RR-IQA) is gradually developed in case that only part of reference
information are needed. However, we strongly concern about how to
evaluate the quality of image in the absence of reference image.
Nowadays, developing an efficient NR-IQA metric has become a hot
spot and focus of research [3,4].

The objective IQA methods can be simply divided into two

categories in terms of the difference of solved distortions, general-
purposed method and distortion-specified method. The aim of general-
purposed method is to solve any IQA problems without consideration of
distortion categories. For example, Mittal et al. [5] designed a com-
pletely blind image quality method (named NIQE) for evaluating
common distortions without relying on the type of them. The NIQE
depends on the statistical features of space domain natural scene sta-
tistic (NSS) model. Zhang et al. [6] further improved the work and
designed the quality-unaware IQA metric (named IL-NIQE). They ob-
tained the quality of image patch through computing the Bhatta-
charyya-like distance from the learned multivariate Gaussian model.
Finally, the image quality was obtained by average pooling. Freitas
et al. [7] proposed a training-based NR-IQA method based on local
ternary pattern (LTP) descriptors. However, compared to LBP, LTP is
not rigidly invariant to gray-level transformation and less susceptible to
noise in uniform regions. Hence, it is not competent to detect milder
image degradation. In [8], the image was first filtered by the Laplacian
of Gaussian (LOG) to form multi-scale subband images. Then, each
subband image was encoded by LBP operator. Finally, the features were
extracted from the joint LBP histograms and fed into support vector
regression (SVR) network. Although these methods achieved consider-
able performance on common distortion types (i.e., White noise, Jpeg
compression, Jpeg2000 compression and Gaussian blur), their perfor-
mance might be declined when they meet other distortion type [9] or
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other image category [10]. In summary, existing general-purposed
methods cannot be effectively competent to each distortion category.
Therefore, the distortion-specified method emerges as the times re-
quire. It is designed for specific distortion type, such as compressed,
blurred and contrasted IQA problems.

In all the distorted categories, blur distortion occupies an important
position and has received more and more attention. Currently, the
measurement about image blurriness/sharpness can be classified into
two categories, namely edge-based and transform-based methods. In
the former case, the edge-based method is mainly based on the spread
of edges and statistical characteristic of texture due to the fact that
blurriness usually causes the variations of image content. Ferzli et al.
[11] explored the mask effect of blurriness around edge and determined
the just noticeable blur (JNB) in function of the local contrast. Then, the
image sharpness was measured on edge spreads, which was determined
by edge width and JNB. Besides, the cumulative probability of blurri-
ness, defined as the summation of probability below blur threshold, can
also represent the image degradation well [12]. With the increasing of
blurriness and the spreading of the edges, more edges exceed the
probability of blur threshold, PJNB. Thus, the cumulative probability
changes accordingly. Bahrami et al. [13] designed a fast sharpness
metric by measuring the standard deviation of maximum local variation
(MLV) distribution, which reflected the maximum intensity variation
between the central pixel and its neighbors. In [14], perceptual
sharpness index (PSI) was proposed to describe image sharpness by
considering edge width and edge slope. In the latter case, transform-
based metrics are mainly based on the hypothesis that the blurred
image loses high frequency information compared with reference
image. Vu and Chandler [15] proposed a fast image sharpness index in
transform domain. In their method, the image quality was calculated as
the weight average of log-energy of discrete wavelet transform (DWT)
coefficients. In addition to the DWT coefficients, the moments of image
reflects the structural information well. Thus, it can be reasonably ap-
plied to IQA problems [16]. In [17], the energy of image patch, which
was calculated as the sum of squared non-DC Tchebichef moment va-
lues, was variance-normalized to represent the image blurriness with
the guidance of saliency weight. Hassen et al. [18] utilized the hy-
pothesis that blur disrupts the local phase coherence (LPC). Therefore,
the image sharpness could be reflected by measuring the degradation of
LPC strength. Gu et al. [2] designed a new sharpness metric via analysis
of autoregressive (AR) parameters. They first calculated the energy
difference and contrast difference in the locally estimated AR coeffi-
cients, and then quantified the image sharpness with percentile pooling
to predict the overall score.

All aforementioned two categories of blurriness/sharpness methods
are well-motivated and have achieved notable successfulness on most
existing databases. Most of them are effective in capturing certain as-
pects about the impact of blur on perceived blurriness/sharpness.
However, some of them ignore the following aspects: (1) there are large
variations in the real-word images in terms of information and content
complexity, thus the image’s gradient strength is not only affected by
the degree of blur but also depends on the sharp detail in the pristine
images; (2) the computational complexity is relatively high due to the
transform and gradient map calculation. To tackle these problems, we
propose an effective and efficient blind image blurriness quality as-
sessment method on the basis of local binary pattern (LBP).

The remaining sections of this paper are arranged as follows:
Section 2 introduces the proposed LBP-based blurriness assessment
method. Section 3 describes the experimental results and shows the
analysis of the proposed method. Finally, the conclusions are drawn in
Section 4.

2. Methodology

Fig. 1 depicts the diagram of the proposed blurriness quality as-
sessment procedure. Two sub-procedures, the training procedure and

testing procedure, consists of the proposed method. For training pro-
cedure, LBP descriptor is utilized to extract the image’s structural in-
formation. Then, the histogram of LBP patterns is calculated to re-
present the image characteristic. Note that not all the histogram bins
correlate well with the image blurriness, through the observation, we
apply parts of histogram bins, which is monotonous to the degree of
blurriness, as the features. Besides, we also regard the entropy of bins as
another feature to reflect the blurriness. Finally, the support vector
regression (SVR) procedure is adopted to learn a model from the feature
vectors to subjective scores. For testing procedure, the histogram bins is
computed first, then, the image’s quality score is predicted by the
trained model.

2.1. LBP algorithm

LBP, as an image descriptor, was first used for texture classification
[19]. Due to the rotation invariant characteristic, it was further used in
many areas, like face recognition [20] and human detection [21]. It
considers the spatial relationship among pixels, and thus, reflects the
structural and textural information to some certain. Since the structure
and texture are distorted during quality degradation, LBP can be ap-
plied to IQA problem. Formally, given a pixel gc, its LBP value can be
expressed as the difference with the circularly symmetric neighbor-
hood:
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where = …g i K, 1 ,i , denotes the gray value of circularly symmetric
neighbor pixels. K is the number of the neighbors, which determines the
quantization of the angular space and computational complexity.
Generally speaking, the computational complexity greatly increases as
K increases. ϕ (·,·) is the thresholding function and defined as:
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T is the threshold, in this paper, we set it as zero. From Eq. (1), it can be
intuitively observed that there are 2K different types of LBP patterns. To
reduce the number of LBP patterns, the uniformity measure can be
applied due to the fact that certain patterns, defined as ‘uniform’ pat-
terns, provide the major structural information with few spatial tran-
sitions [22]. A pattern is treated as uniform pattern if the circular se-
quence of bits contains no more than two transitions from zero to one,
or one to zero. Fig. 2 depicts an example of uniform LBPs for 8-neighbor
patterns. In this figure, the adjacent pixel is colored blue1 if its intensity
is larger than that of center pixel, otherwise, it is colored red. As can be
seen from Fig. 2, there are 9 uniform patterns when K equals to 8.
Additionally, the LBP value of uniform pattern doesn’t change even the
pattern is rotated. In other words, the unform pattern is invariant.
Formally, the rotation invariant uniform LBP is expressed as:
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where the superscript riu2 denotes the rotation invariant uniform pat-
terns. The uniform measure μ is calculated as the number of bitwise
transitions:
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where ‖·‖ denotes l2-norm operation. As can be seen in Eq. (4), the

1 For interpretation of color in Fig. 2, the reader is referred to the web version of this
article.
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values of the adjacent two points in LBP pattern subtract each other,
and then the difference values are summed up. With this operation,
when K equals to 8, LBP patterns can form 9 uniform patterns (as shown
in Fig. 2) and the other LBP patterns are labeled as the 10-th pattern. To
be specific, two LBP patterns with μ =0 (as the first and ninth patterns
in Fig. 2) form the first and second uniform patterns and 7×8 LBP
patterns with μ =2 (seven different types (as the second to the eighth
patterns in Fig. 2) multiply 8 orientations) form the third to ninth
uniform patterns, while the other LBP patterns form the 10-th patterns.
Generally, from Eqs. (3) and (4), we can obtain +K 2 LBP patterns
( +K 1 uniform patterns and 1 nonuniform pattern). According to the
LBP value of each pixel, the LBP patterns can be further expressed in
form of structural histogram. As a result, an input image can be mapped
into +K 2 bins.

2.2. Image blurriness assessment

Although LBP has been used in IQA problems [23], it is usually
operated on transform domain or taken as the complementary feature.
As a result, the computational complexity is high and the performance
is limited. Through the statistic of a large amount of blurred images, we
find that LBP histogram bins change regularly with the blurred degree,
and thus, LBP can be directly employed in evaluating the blurriness of
target image. In this article, we extract the LBP features directly on gray
map and select part of histogram bins as the feature vectors to represent
the image sharpness. To obtain a better performance, the LBP was
calculated twice with different radiuses (as discussed in Part 3.4, Sec-
tion 3). Fig. 3(a) shows a group of blurred images in TID2008 database
[24]. The blurriness increases from left to right. Fig. 3(b) depicts

Fig. 1. Diagram of the proposed blurriness
assessment method.

Fig. 2. Uniform LBPs for 8-neighbor patterns.
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corresponding histogram of the 8-neighbors uniform LBP patterns with
different radius values (one pixel and two pixels). We can find that, the
histogram bins change regularly as the blurriness increases. To fully
prove this observation, we analyzed the blurred image set with various
blurred levels in TID2008 database. Fig. 3(c) and (d) shows the mean
histograms of 8-neighbors uniform LBP patterns with same blurred level
when the radius is one and two, respectively. In these figures, the “org”
denotes the reference image; “level1-4” stand for the blurred images,
where “level1” corresponds to the slightly blurred image, “level4”
corresponds to the seriously blurred image. From the figures, we obtain
the following important information: (1) not all the bins change reg-
ularly with the distortion level increased; (2) the changes of bins 1, 2, 3,
and 7 in blurred image are monotonous to the blurriness (from level1 to
level4), when the radius value is one; (3) while the bins 1, 2, 3, 5, 6, and
10 present a similar regularity when the radius value is two. In view of
these observations, we have sufficient confidence that the LBP histo-
gram bins can be competent to evaluate the image blurriness. Motivated
by these, we utilize these observations to extract the feature vectors:

= ∈
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where i is the order of histogram bins, M is the set of selected bins.
Specifically, the M contains the 1st, 2nd, 3rd, and 7th bins when radius
is one and 1st, 2nd, 3rd 5th, 6th, and 10th bins when radius is two.
n LBP i( )K R

riu
,

2 is the number of rotation invariant uniform K-bit LBP

pattern of type i when radius value is R. N is the total number of pixels
in the image, it serves to normalize the metric so that ∈f [0,1]LBP i,K R, . In
addition, we also find that with the degree of blurriness increasing, the
distribution of bins is more complex compared to the uniform dis-
tribution. Thus, the entropy might be changed with the degree of
blurriness increasing. In order to explore the regularity, we compute the
entropy of bins in the same blurriness level on TID 2008, as shown in
Fig. 4. As can be seen from the figure, the entropy is monotonic to
blurriness. Therefore, we take the entropy of bins, fe as another feature.
Finally, the feature vector fLBP is composed of fLBP i,8,1 fLBP i,8,2 and fe.

After calculating the feature vectors, a regression algorithm is ap-
plied to learn a mapping from the feature vectors to quality score space.
We choose LIBSVM [25] to implement the ∊-SVR. Given a training
dataset = …d x y x y{( , ),( , ),1 1 2 3 x y( , )}z z , where xi and ∈ …y i z, {1, }i are the
feature vector of image i and the associated MOS. The standard form of
SVR is formulated as:
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where ≡K x x ϕ x ϕ x( , ) ( ) ( )i j i i
T is the kernel function that performs the

Fig. 3. LBP code distribution of reference
image and blurred images in TID2008. (a)
A group of blurred images in TID2008 da-
tabase. The blurriness increases from left to
right. (b) The corresponding LBP histo-
grams. The radius value is one in the first
row, while it is set as two in the second
row. (c) and (d) are mean LBP histograms
with radiuses of one pixel and two pixels,
respectively. The org represents the re-
ference image, while the others represent
the blurred images. From level1 to level4,
the image is more seriously blurred with
increased Gaussian blur radius.
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nonlinear transformation. ξ and ̂ξ are slack variables. z is the number of
elements in the training sample subset. In solving the SVR, ∊-insensitive
loss function is used to ignores errors that are smaller than a certain
threshold. Meanwhile, the penalty parameter C is used to control the
complexity of the prediction function. Since radial basis function (RBF)
has fast convergence characteristic and approximates to any nonlinear
function, we chose it to measure the similarity between two samples in
high dimension. The RBF can be expressed as:

= − −K x x e( , )i j
γ x x‖ ‖i j 2

(7)

where γ is the variance of the kernel function. All the parameters were
determined by grid search to obtain the best performance.

3. Results and analysis

3.1. Experiment setup

To verify the performance of the proposed method, we utilized the
reference and its blurred images of four available 2D IQA databases
including CSIQ [26], LIVE II [27], TID2008 [24] and TID2013 [28]. All
the blurred images are obtained using Gaussian low-pass filtering in
these databases. The number of them are 150, 174, 100 and 125, re-
spectively, in the four databases. The subjective scores are reported in
form of the different of mean opinion scores (DMOS) in LIVE II and
CSIQ, while they are represented as mean opinion scores (MOS) in
TID2008 and TID2013. Besides, we also explore the effectiveness of the
proposed method on 3D image blurriness assessment. Two publicly
available 3D IQA databases, namely LIVE 3D IQA Database Phase I [29]
and LIVE 3D IQA Database Phase II [30] are employed in this paper. In
LIVE 3D IQA Database Phase I, both left and right image are blurred
symmetrically, while they are blurred symmetrically and asymme-
trically in LIVE 3D IQA Database Phase II.

Three commonly used criteria suggested by VQEG were employed to
compare the proposed method with existing sharpness IQA metrics: (1)
Pearsons linear correlation coefficient (PLCC), which indicates the
prediction accuracy; (2) root-mean-squared error (RMSE); (3)
Spearman rank-order correlation coefficient (SRCC), which express the
monotonicity by ignoring the relative distance between the data. The
five parameter logistic regression function is applied before the

computation of PLCC and RMSE to reduce the nonlinearity. It is for-
mulated as:

= ⎛
⎝

−
+

⎞
⎠

+ +−Q q ν
e

ν q ν( ) 1
2

1
1m ν q ν1 ( ) 4 52 3 (8)

where Q q( )m is the fitted quality score, and = …ν l, 1, ,5l , are the para-
meters to be fitted. Theoretically, a good performance can be reflected
by a perfect match of quality score and human perception score. And it
can be represented as SRCC=1, PLCC=1 and RMSE=0.

3.2. Performance comparison on 2D databases

In this section, we compare the proposed method with several state-
of-the-art general-purposed IQA metrics, including GMSD [31], NIQE
[5], IL-NIQE [6], ADD-SSIM [32], ADD-GSIM [32], NFERM [3] and
SISBLIM [33]. The experimental performances are obtained through the
implementation of the released demos. As the proposed method is based
on SVR algorithm, thus, the dataset requires to be divided into training
and testing sets. In the experiment, 80% datasets are used for training,
while the remaining datasets are used for testing. The random trai-
ning–testing split is repeated 1000 times to reduce the performance
bias. Table 1 lists the results in terms of PLCC, SRCC and RMSE on the
four 2D databases. The results are reported in forms of median. To
emphasize the metrics with good performance, we bold the top two
results. As expected, the proposed method achieves considerable re-
sults. Specifically, the proposed method is slightly inferior to GMSD,
ADD-GSIM and produces the third best performance in terms of RMSE
and SRCC in Live II database. It also produces the similar results on the
rest of databases. In spite of these, our algorithm always occupies the
top three positions across all databases, while other algorithms produce
large fluctuation. Overall, according to the weight average values, the
proposed method achieves the best performance across the four data-
bases in terms of PLCC, and achieves the second best performance in
terms of SRCC. Note that, the SRCC of the proposed method is slightly
inferior to ADD-SSIM with 0.2% decrement, while PLCC value is su-
perior to it with 2% improvement. In summary, the proposed method
produces very good performance and well-matched with the state-of-
the-art general-purposed IQA metrics.

In order to further test and verify the effectiveness, we also compare

Fig. 4. Entropy plot of different blurriness levels.
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the proposed method with several state-of-the-art blurriness-specified
NR-IQA metrics as well as two LBP-based methods, including ARISM
[2], BIBLE [17], FISHbb [15], LPC-SI [18], MLV [13], JNB [11], CPBD
[12], LTP [7] and NR-LBPSriu2 [8]. To ensure the fairness of the com-
parison, all the results except LTP [7] and NR-LBPSriu2 [8] (their codes
are not released by authors) are obtained by using demos released by
authors. For LTP and NR-LBPSriu2, we directly copy the experiment
results from the associated papers. Table 2 tabulates the comparison
results among the selected metrics on four public databases (the bold
values indicate the best performance). In the table, “–” denotes empty.
From the table, it can be intuitively observed that the proposed method
always obtains the highest performance across all the selected metrics
on all databases except CSIQ. The LTP [7] obtains the best performance
on CSIQ, however, it is inferior to the proposed method on the other
databases. BIBLE [17] is the second best method from comprehensive

view. It produces better performance on LIVE II and CSIQ, while yields
to general performance on TID2008 and TID2013. On the contrary, the
proposed method achieves the best performance on most databases and
improves the performance over BIBLE by 2.53% in PLCC on TID2013.
Overall, the proposed method produces the highest scores and corre-
lates with human perception well in terms of prediction accuracy and
monotonicity.

In order to further confirm the superiority of the proposed method,
we calculate the statistical significance between it and all the com-
pleting methods. For this purpose, the two sample t-test was employed
to measure whether the mean values of two independent PLCC samples
were equivalent or not. The test is conducted at 5% significance level.
Table 3 lists the experiment results on four databases. For simple re-
presentation, “1” (“−1”) indicates that the proposed method is superior
(inferior) to the compared method, while “0” means that both methods
are statistically equivalent. As expected, the proposed method sig-
nificantly outperforms most competing methods on four databases. To
be more specific, it is statistically equivalent to MLV, BIBLE, GMSD and
ADD-GSIM once on CSIQ 2008 and CSIQ 2013 and superior to all
competing methods on Live II and CSIQ.

3.3. Robustness analysis

To validate that the method is not heavily depended on the training
set, we utilized the following analysis. The training set is varied from

Table 1
Summary of experimental results of the proposed method and compared general-purposed IQA metrics.

Database Crietria General purpose IQA metric

GMSD [31] NIQE [5] IL-NIQE [6] ADD-SSIM [32] ADD-GSIM [32] NFERM [3] SISBLIM [33] Pro. method

Live II SRCC 0.9751 0.9449 0.8975 0.9796 0.9773 0.9555 0.9195 0.9704
(174) PLCC 0.9788 0.9284 0.8732 0.9615 0.9682 0.9577 0.9138 0.9769

RMSE 4.4535 8.0815 10.6008 4.9739 4.4398 4.5263 8.8341 4.6143

CSIQ SRCC 0.8864 0.8945 0.8576 0.8935 0.8885 0.8964 0.8833 0.9320
(150) PLCC 0.8990 0.9215 0.7986 0.8887 0.8967 0.9201 0.8640 0.9507

RMSE 0.1255 0.1113 0.1725 0.1314 0.1268 0.1122 0.1443 0.0876

TID2008 SRCC 0.8968 0.8165 0.8099 0.9356 0.9157 0.8075 0.7858 0.9038
(100) PLCC 0.8956 0.8376 0.8265 0.9264 0.9022 0.8031 0.7817 0.9132

RMSE 0.5221 0.6413 0.6607 0.4419 0.5022 0.6992 0.6491 0.4720

TID2013 SRCC 0.9113 0.7968 0.8155 0.9452 0.9344 0.8498 0.8051 0.9286
(125) PLCC 0.9095 0.7995 0.8316 0.9351 0.9227 0.8505 0.8069 0.9389

RMSE 0.5188 0.7495 0.6930 0.4421 0.4810 0.6563 0.7370 0.4259

Weight average SRCC 0.9221 0.8740 0.8520 0.9402 0.9320 0.8883 0.8592 0.9383
PLCC 0.9261 0.8806 0.8348 0.9292 0.9263 0.8998 0.8641 0.9495

Table 2
Performance comparisons with state-of-the-art NR-IQA metrics.

Metrics TID 2008 TID 2013

PLCC SRCC RMSE PLCC SRCC RMSE

ARISM [2] 0.8430 0.8505 0.6312 0.8954 0.8980 0.5556
LTP [7] – – – – 0.9423 –

NR-LBPSriu2 [8] – – – – – –
BIBLE [17] 0.8936 0.8915 0.5268 0.9057 0.8988 0.5290
FISHbb [15] 0.8524 0.8378 0.6135 0.8764 0.8584 0.6009
LPC-SI [18] 0.8586 0.8561 0.6017 0.8490 0.8888 0.5591
MLV [13] 0.8593 0.8548 0.6001 0.8830 0.8787 0.5858
JNB [11] 0.6932 0.6667 0.8458 0.7113 0.6787 0.8772
CPBD [12] 0.8331 0.8412 0.6429 0.8620 0.8518 0.6325
Pro. method 0.9059 0.8962 0.4840 0.9310 0.9192 0.4470

Metrics LIVE II CSIQ

PLCC SRCC RMSE PLCC SRCC RMSE

ARISM [2] 0.9628 0.9679 5.8796 0.9456 0.9255 0.0932
LTP [7] 0.9485 0.9423 – 0.9212 0.9017 –

NR-LBPSriu2 [8] 0.9436 0.9426 – – – –
BIBLE [17] 0.9728 0.9649 5.7081 0.9397 0.9132 0.0980
FISHbb [15] 0.9566 0.9597 6.3350 0.9164 0.9177 0.1147
LPC-SI [18] 0.9477 0.9594 6.9404 0.9097 0.9071 0.1192
MLV [13] 0.9619 0.9566 5.9437 0.9489 0.9247 0.0904
JNB [11] 0.8398 0.8373 11.8083 0.8339 0.7729 0.1555
CPBD [12] 0.9128 0.9429 8.8827 0.9155 0.8847 0.1153
Pro. method 0.9771 0.9704 4.6255 0.9490 0.9315 0.0880

Table 3
Results of two sample t-test performed between PLCC obtained by competing IQA
methods on four databases.

Metric Live II CSIQ TID 2008 TID 2013

ARISM [2] 1 1 1 1
NFERM [3] 1 1 1 1
BIBLE [17] 1 1 0 1
FISHbb [15] 1 1 1 1
LPC-SI [18] 1 1 1 1
MLV [13] 1 0 1 1
JNB [11] 1 1 1 1
CPBD [12] 1 1 1 1

SISBLIM [33] 1 1 1 1
GMSD [31] 1 1 0 1
NIQE [5] 1 1 1 1

IL-NIQE [6] 1 1 1 1
ADD-SSIM [32] 1 1 1 1
ADD-GSIM [32] 1 1 0 1
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90% of the content to only 10%, while the remaining dataset is used for
testing. For each case, the dataset was randomly operated 1000 times
and the values of three criterions were reported in form of median.
Fig. 5 depicts the relationship between PLCC performance and training
ratio. It can be intuitively observed that the PLCC value increases in all
databases as training ratio increasing. Moreover, the performance is
still high even though the training set is less than 30%. This shows that
the proposed method is robust.

3.4. Parameters sensitivity

Because LBP possesses two parameters, i.e., radius R and sampling
point K, it is meaningful to explore their impacts on the overall per-
formance. In this section, we conduct an extra experiment to unveil the
mystery. For this purpose, we directly utilize fLBP to form the feature
vectors for avoiding the interference of fe. Generally speaking, the LBP
descriptor usually utilizes 8 sampling points. Taking this as a break-
through point, we first fix the sampling point as 8 and change the radius
from 1 to 4. Second, we fix the radius as 1 and set the sampling point as
{4, 8, 16}. We manually extract the histograms bins, which are con-
sistent with the degree of blurriness, in cases of various radiuses and
sampling points. Table 4 gives the experiment results performed on TID
2008. In the table, “R1- K2 8” denotes the model by combining the ex-
tracted features when the radiuses are 1 and 2, sampling point is 8.
From the table, we can observe that: (1) we only obtain general per-
formance when utilizes single radius and sampling point (e.g.,
R K R K R K1 8, 2 8, 3 8 and R K3 8); (2) although R K1 16 performs encouraging
results, it requires more computational complexity than R K1 8 and
R K1 4; (3) the performance increases when combining various radiuses
together. However, there is no obvious difference among

R1- K R2 8, 1- K3 8 and R1- K4 8. Therefore, considering the trad-off between
computational complexity and performance, we reasonably choose
R1- K2 8 in this article.

3.5. Performance on JPEG2000 and unsharp masking distortions

In this part, we first make an extra experiment to validate the
proposed method’s performance on JPEG2000 distortion. It is observed
from Fig. 2 that, part of histogram bins change regularly with the in-
crease of blurriness. Therefore, the proposed method might also work
well on other distortions that cause blurriness in an image. To reduce
the amount of data, JPEG2000 concentrates most of important visual
information on a small number of wavelet coefficients, and the re-
maining coefficients are roughly quantified or directly converted to
zero. To some certain, JPEG2000 leads to loss of high frequency com-
ponents, leading to the generation of blurriness. As depicted in Fig. 6,
the edge of image spreads out when suffered from serious JPEG2000
compression. In view of this, we explored the effectiveness of the pro-
posed method on four public databases. Experimental results are ta-
bulated in Table 5 in form of median. As shown by the data in Table 5
that the proposed method also performs notable performance with re-
spect to JPEG2000 distortion evaluation.

It is widely known that the visual appearance of an image may be
significantly improved by emphasizing its high frequency contents. As
high frequency contents are emphasized, the edge and detail informa-
tion is enhanced. However, excessive manipulation can produce side
effects. On the one hand, the perceptual quality of an image might be
declined by excessively increasing high frequency. On the other hand, it
may also neglect the low frequency contents. Therefore, in this para-
graph, we make an attempt to examine whether the proposed method
suits for the evaluation of image sharpness. To solve this problem, we
choose three representative images from TID2008 and process them via
linear unsharp masking algorithm. The linear unsharp masking algo-
rithm was employed to generate the enhanced image ′I :

′ = + −I I λ I I·| |f (9)

where I is the original image; If is the output of low pass filter; “||” is the
absolute value operator; λ is the positive scaling factor that controls the
level of high frequency enhancement. In this article, the image was
filtered by Gaussian filter with template 5×5; the λ ranges from 0.1 to

Fig. 5. Plot of median PLCC as a function of training’s proportion.

Table 4
Results of the proposed method with different parameters on TID 2008 database.

Model PLCC SRCC RMSE Model PLCC SRCC RMSE

R1K8 0.8446 0.8211 0.6123 R1-2K8 0.8923 0.8742 0.5244
R2K8 0.8728 0.8526 0.5602 R1-3K8 0.9051 0.8925 0.4928
R3K8 0.8765 0.8574 0.5585 R1-4K8 0.8948 0.8797 0.5206
R4K8 0.8159 0.7986 0.6675 R1K4 0.8814 0.8722 0.5476
R1K16 0.9007 0.8897 0.5013
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2 in steps of 0.3. To the end, 21 images are obtained in total. 15 ob-
servers were recruited to give the opinion scores of the generated
images. Then, the MOS were obtained by averaging all the subjective
scores of each image. Finally, we extract the image feature vectors and
feed them into the trained SVR module on TID 2008. In Fig. 7, there are
three lines of words. The first line is the positive scaling information,
while the second and third lines are the MOS and predicted scores via
the proposed method. As expected, the proposed method obtains en-
couraging performance with PLCC of 0.71.

3.6. Performance comparison on 3D databases

With the rapidly advances in stereoscopic display, 3D multimedia
comes into people’s life due to its incomparable advantage on re-
appearing vivid scene. Recently, many movies, TV programs and
computer games are produced using 3D technologies. Indeed, 3D
images are ineluctable to meet distortions like 2D images. Hence, it is
significant to design a NR IQA method that is competent for both 2D

and 3D distortion assessment. In this part, we examine the performance
of the proposed method on 3D IQA problem. Firstly, both left and right
image of 3D image pair are analyzed separately to extract LBP features
(using the same procedure as 2D image). Then the overall feature vector
is composed of LBP features extracted from both left and right images.
Finally, a model is trained using SVR to map the feature space to quality
space. Table 6 tabulates the comparison results among the proposed
method and several state-of-the-art 3D IQA methods. Since the source
codes are not released by authors, we extract the experimental results
directly from the corresponding papers. The best results are highlighted
in bold. We can make the following observations from the presented
results: (1) the proposed method delivers very promising on both 3D
IQA databases. It achieves the best performance on PLCC and RMSE
across all databases; (2) compared to other metrics, the proposed
method produces very high performance on both databases. In parti-
cular, the proposed method is suitable for both symmetric and asym-
metric distortion types, while the performance of some metrics declines
fast when it meets asymmetric distortion (e.g., Chen [34] and STRIQE
[35] achieves promising results on symmetric Jp2k distortion, but
produces general results on asymmetric Jp2k distortion). Through these
observations, we have sufficient reason to prove that our algorithm can
be well qualified for both the 2D and 3D image blurriness evaluation
tasks.

3.7. Runtime analysis

To evaluate the runtime, a comparison was conducted between the
proposed method and the selected methods on estimating the images of

Fig. 6. The image “woman” and its associated
distorted images: (a) Reference image, and (b)
JPEG 2000.

Table 5
Experimental results on JPEG2000 distortion.

Database PLCC SRCC RMSE

LIVE II 0.9609 0.9521 6.7435
CSIQ 0.9157 0.8892 0.1270

TID2008 0.9483 0.9180 0.6019
TID2013 0.9461 0.9028 0.5450

Fig. 7. The image “woman” and its associated unsharp
masking images: from (a) to (b) with different λ.
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size 512× 384, 768×512, 1920×1080 and 3840×2160 pixels.
Table 7 provides details of comparison results (in seconds). All algo-
rithms are implemented in MATLAB 2013b and executed on a 2.6 GHz
processor with 8 GB RAM, Windows 7 Pro 64-bit laptop.

As shown in Table 7, the computational time increases as with the
increment of image size. Even though the image size is 3840×2160
pixel, the run time is still short using the proposed method. Overall, the
proposed method is slightly slower than MLV but superior to other
methods to a great extent. This phenomenon might be attributed to the
following reasons: (1) compared to other metrics, the proposed method
is computed directly and doesn’t require feature space transformation;
(2) the proposed method only calculates the LBP features, which needs
less computational complexity.

4. Conclusion

In this paper, an effective and efficient NR blurriness assessment
metric is proposed based on LBP features. Through comprehensive
statistic, we reveal that the entropy of LBP histogram bins and part of
LBP histogram bins change monotonous to the degree of blurriness.
Therefore, the special bins and entropy are chosen as the feature vec-
tors. The predicted quality score is obtained by using a pre-trained re-
gression module. Results obtained through comprehensive experiments
prove that the proposed method outperforms the state-of-the-art FR-QA
and NR-IQA metrics on LIVE II, CSIQ, TID2008 and TID2013 databases
in terms of high consistency with human perception and low compu-
tational complexity. Besides, the proposed method can also be compe-
tent for 3D image blurriness assessment problem without alterations.
Experimental results show that the proposed method do well in 3D
blurriness assessment under both symmetric and asymmetric blurred
distortions.
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